Mitochondrial DNA depletion and fatal infantile hepatic failure due to mutations in the mitochondrial polymerase γ (POLG) gene: a combined morphological/enzyme histochemical and immunocytochemical/biochemical and molecular genetic study
نویسندگان
چکیده
Combined morphological, immunocytochemical, biochemical and molecular genetic studies were performed on skeletal muscle, heart muscle and liver tissue of a 16-months boy with fatal liver failure. The pathological characterization of the tissues revealed a severe depletion of mtDNA (mitochondrial DNA) that was most pronounced in liver, followed by a less severe, but still significant depletion in skeletal muscle and the heart. The primary cause of the disease was linked to compound heterozygous mutations in the polymerase γ (POLG) gene (DNA polymerase γ; A467T, K1191N). We present evidence, that compound heterozygous POLG mutations lead to tissue selective impairment of mtDNA replication and thus to a mosaic defect pattern even in the severely affected liver. A variable defect pattern was found in liver, muscle and heart tissue as revealed by biochemical, cytochemical, immunocytochemical and in situ hybridization analysis. Functionally, a severe deficiency of cytochrome-c-oxidase (cox) activity was seen in the liver. Although mtDNA depletion was detected in heart and skeletal muscle, there was no cox deficiency in these tissues. Depletion of mtDNA and microdissection of cox-positive or negative areas correlated with the histological pattern in the liver. Interestingly, the mosaic pattern detected for cox-activity and mtDNA copy number fully aligned with the immunohistologically revealed defect pattern using Pol γ, mtSSB- and mtTFA-antibodies, thus substantiating the hypothesis that nuclear encoded proteins located within mitochondria become unstable and are degraded when they are not actively bound to mtDNA. Their disappearance could also aggravate the mtDNA depletion and contribute to the non-homogenous defect pattern.
منابع مشابه
Molecular and biochemical characterisation of a novel mutation in POLG associated with Alpers syndrome
BACKGROUND DNA polymerase γ (POLG) is the only known mitochondrial DNA (mtDNA) polymerase. It mediates mtDNA replication and base excision repair. Mutations in the POLG gene lead to reduction of functional mtDNA (mtDNA depletion and/or deletions) and are therefore predicted to result in defective oxidative phosphorylation (OXPHOS). Many mutations map to the polymerase and exonuclease domains of...
متن کاملInfantile hepatocerebral syndromes associated with mutations in the mitochondrial DNA polymerase-gammaA.
We studied nine infant patients with a combination of progressive neurological and hepatic failure. Eight children, including two sibling pairs and four singletons, were affected by Alpers' hepatopathic poliodystrophy. A ninth baby patient suffered of a severe floppy infant syndrome associated with liver failure. Analysis of POLG1, the gene encoding the catalytic subunit of mitochondrial DNA po...
متن کاملIsolated distal myopathy of the upper limbs associated with mitochondrial DNA depletion and polymerase gamma mutations.
OBJECTIVE To describe an unusual clinical phenotype in an adult harboring 2 compound heterozygous polymerase γ (POLG) mutations. DESIGN Case report. SETTING University-based outpatient neurology clinic and pathology and genetics laboratory. PATIENT A 27-year-old man presenting with isolated distal myopathy of the upper extremities in the absence of sensory disturbances. RESULTS Histoche...
متن کاملSensory neuronopathy in patients harbouring recessive polymerase γ mutations.
Defects in the mitochondrial DNA replication enzyme, polymerase γ, are an important cause of mitochondrial disease with ∼25% of all adult diagnoses attributed to mutations in the POLG gene. Peripheral neuronopathy is often part of the clinical syndrome and can represent the most disabling feature. In spite of this, the molecular mechanisms underlying the neuronopathy remain to be elucidated and...
متن کاملHuman mitochondrial DNA replication machinery and disease.
The human mitochondrial genome is replicated by DNA polymerase γ in concert with key components of the mitochondrial DNA (mtDNA) replication machinery. Defects in mtDNA replication or nucleotide metabolism cause deletions, point mutations, or depletion of mtDNA. The resulting loss of cellular respiration ultimately induces mitochondrial genetic diseases, including mtDNA depletion syndromes (MDS...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 15 شماره
صفحات -
تاریخ انتشار 2011